
JDJ.SYS-CON.com32 October 2005

n a market that is defined by today’s tight IT budgets,
saving on software licenses can mean the difference
between financial failure and success for a software
development project. While our corporate clients use
commercial-grade application servers, we sometimes

find ourselves in a situation where there are no funds
for developer licenses of these commercial application
servers. Out of necessity, we developed and implemented
a process that allows for development on top of an open
source stack, while production delivery relies on a com-
mercial application server.
 Initial concerns that implementation differences and
the different runtime environments would lead to issue-
prone deployments turned out to be unjustified. While
different application servers do indeed show incompatibil-
ities, we found that we were able to avoid common pitfalls
through preparation and disciplined coding. In this article,
we will explain what it takes to develop complex Web ap-
plications with Eclipse and Tomcat and to deploy these ap-
plications to a WebSphere-based production environment.

Introduction
 It all started when a client requested a solution for the
WebSphere application server platform, but did not want to
cover the cost of WebSphere Studio licenses for the devel-
opment team. We looked for alternatives and found one in
Eclipse and Tomcat.
 The team initially feared that the different implementation
of core functionalities provided by application server con-
tainers would create application portability issues. The main
areas of concern included transaction management, security,
and application deployment.
 Because we used IBM’s Tivoli Access Manager and Web-
SEAL Reverse Proxy in production, but relied on Tomcat’s
built-in authentication in development, there was concern
that having only a subset of the target security infrastructure
available in development would limit our ability to build a
security service layer for Tivoli.
 These risks had to be addressed and dealt with. At that
time it seemed that the cost of doing so would outweigh the
potential savings from software licenses. However strong this
concern was, it was difficult to convey it to a client who was
eager to start the project, and so we embarked on the open
source endeavor.

Developing with Eclipse and Tomcat
 Once properly configured, Eclipse can be a powerful
hub for developing your application. It can automatically
generate content and code such as class header com-
ments, implementations of functions from interfaces,
variable getters and setters, and more. These time-saving
tools, along with the multitude of available plug-ins
(e.g., for Tomcat, VSS, and Struts) allowed us to spend less
time performing repetitive tasks and more time actually
developing.
 We created a project in Eclipse with its root reflecting
the root of our Web application, which would later be
packaged into a WAR (Web Application Archive), then
an EAR (Enterprise Archive), along with the required
application configuration files, for deployment to Web-
Sphere. This root directory was located within the “we-
bapps” directory of our Tomcat installation, which
is the default directory that Tomcat allocates for Web
applications.

Sumitra Chary is a senior

software engineer at

Molecular. Her career has

spanned both academic and

commercial worlds. These have

included software systems for

X-ray observatory missions,

network management,

marketing automation, and

enterprise Web applications.

schary@moecular.com

by Sumitra Chary, Christian Donner,
Jim Lamoureaux, Ilia Papas, and Dita Vyslouzil

I
The goal: cross-platform
 Java development

Feature

 Table 1 Development Stack

 Table 2 Production Stack

33October 2005JDJ.SYS-CON.com

 Although the Tomcat plug-in for Eclipse does not add
any new functionality to either product, it greatly eases
the integration of the two and saves time by consolidating
common tasks in one place and reducing the need for mul-
titasking. Debugging in Eclipse is fairly robust, allowing
the user to step through code and to evaluate expressions
on the fly. The JDK we were using (IBM 1.3.1) does not sup-
port hot-replacing of classes, but new code is loaded on an
application server restart, which does not take much time.
 It should be mentioned that Tomcat does not support
Enterprise beans. We decided against Enterprise beans
because the Spring framework provides similar features
without the platform dependencies.
 The Microsoft Visual SourceSafe plug-in integrates
well into the Eclipse interface, allowing for comments on
both checkout and check-in. It also provides a report of
all files checked out within the project, the owner, and
what actions are being performed on them. The only gripe
is that when checking-in files, it does not remember the
checkout comment, so it must be reentered manually.
 There are a few aspects to take into consideration when
bridging the gap between the development and produc-
tion environments. User authentication, handled by Tivoli
Acess Manager in production, was handled by the tomcat-
users.xml file located in the config directory. Roles, users,
and passwords are recorded in this file. Through the use
of configuration files and Ant, we were able to easily
change server locations and credentials, as well as any
other variables that may need to change when code is

moved between environments. Tomcat tends to be much
more forgiving when it comes to parsing configuration files
such as the web.xml and tag library definitions, whereas
WebSphere will either load the application in a crippled
state or not at all. The dtds must be adhered to in order to
avoid this issue.

Production Environment
 The production environment was a load-balanced
configuration of two application servers and several
other servers hosting the security environment (Tivoli
Access Manager) and the database (see Tables 1 and 2
and Figure 1).

Multiple Environments
 In most software development projects, to support
the life cycle of the application, there are multiple environ-
ments into which the code must be deployed (see Figure 2).
 When the application is deployed from one environment
to another, various things need to change, such as data-
base data source information and LDAP server informa-
tion. We used Ant’s property filtering capability to generate
runtime resource files, such as properties files and Spring
application context files, with the correct information ap-
propriate to each environment.
 We recommend the following steps to make this work:
1. Define a deploy.host property and assign a value

according to the hostname of the target deployment
environment

Christian Donner is a senior

consultant and technical

architect at Molecular.

He is a Certified Sun

Enterprise Architect for

Java 2 and devotes much

of his career to helping

clients integrate complex

Web applications with

their grown corporate IT

infrastructures. Christian

has 20 years of

experience in software

development

cdonner@molecular.com

The goal: cross-platform
 Java development

JDJ.SYS-CON.com34 October 2005

2. Create a separate properties file for each host with envi-
ronment-specific values. For example, JDBC property
definitions for serverA might be defined in serverA.prop-
erties as follows:

#

Database overrides

#

jdbc.driver.classname = net.sourceforge.jtds.jdbc.Driver

jdbc.driver.type = jtds

jdbc.server.type = sqlserver

jdbc.server.port = 1433

jdbc.server.host = db01

jdbc.username = db01-user

jdbc.password = db01-pwd

3. Create Ant filter token definitions that use the environ-
ment-specific properties:

<filterset id=”project.filter.tokens”>

 <!-- DB Service(s) -->

 <filter token=”JDBC.DRIVER.CLASSNAME” value=”${jdbc.driver.class-

name}”/>

 <filter token=”JDBC.DRIVER.TYPE” value=”${jdbc.driver.

type}”/>

 <filter token=”JDBC.SERVER.TYPE” value=”${jdbc.server.

type}”/>

 <filter token=”JDBC.SERVER.HOST” value=”${jdbc.server.

host}”/>

 <filter token=”JDBC.SERVER.PORT” value=”${jdbc.server.

port}”/>

 <filter token=”JDBC.USERNAME” value=”${jdbc.username}”/>

 <filter token=”JDBC.PASSWORD” value=”${jdbc.password}”/>

</filterset>

4. Create a properties file containing the filter tokens.
Ant will substitute actual values for the tokens:

jdbc.driverClassName = @JDBC.DRIVER.CLASSNAME@

jdbc.url = jdbc:@JDBC.DRIVER.TYPE@:@JDBC.SERVER.TYPE@://@JDBC.

SERVER.HOST@:@JDBC.SERVER.PORT@

jdbc.username = @JDBC.USERNAME@

jdbc.password = @JDBC.PASSWORD@

5. Place a copy task in some target that invokes the filter
token substitution (<filterset>):

<target name=”copy-files” depends=””>

 <!-- Copy, with overwrite, properties and xml files

 - so that configuration changes via Ant build properties

 - will always be picked up.

 -->

 <copy todir=”${web.build.dir}” overwrite=”yes”>

 <fileset dir=”${web.src.dir}”>

 <include name=”**/*.properties” />

 <include name=”**/*.xml” />

 </fileset>

 <filterset refid=”project.filter.tokens” />

 </copy>

</target>

 When the application is packaged, it looks in (among
other places) ${web.build.dir} for files to include in the
Web application archive (WAR). There, it will find the
generated runtime resources with environment-specific
values.

Spring
 The Spring Framework was very useful in allowing us
to develop our application in a container-agnostic fashion.
We took advantage of several of the many features of
Spring.

1. Service Location
 We used Spring application contexts for the integration
with Struts, for deployments to Tomcat and WebSphere,
in standalone utility applications, and even in JUnit tests.
Spring allowed us to standardize how our service objects
were found and initialized across all uses of those objects
in a compelling way.

2. Bean Life Cycle and Dependency Management
 By using Spring’s application contexts, we successfully
avoided stateless session beans that would have caused
deployment issues across containers (not to mention
the fact that Tomcat would not have readily supported
EJBs).

Feature

 Figure 1 Development and Production Stack

 Figure 2 Multiple Environments

Jim Lamoureaux is a senior

consultant and software

architect at Molecular. His

interests include object-oriented

design and implementation,

programming languages,

and software process. Jim is

a Sun Certified Programmer

for the Java 2 Platform. He

currently lives in Southern New

Hampshire.

jim@molecular.com

35October 2005JDJ.SYS-CON.com

 We used Ant (Ant 1.6+) to manage configuration, builds, and deployments from
local development environments to the integration server, from there to the stag-
ing server, and finally to production. The ant scripts needed to handle two main
server differences:

1. The WEB-INF/lib directory had to be populated with any JARs not provided by

the application server. Specifically, our Tomcat environment required the option-

al JDBC 2.0 Package while WebSphere already came with the necessary classes

installed.

2. The security-* elements of the Web deployment descriptor (web.xml) needed to

include security-role definitions for deployments to Tomcat. In WebSphere, the

security roles were defined at the enterprise application level (application.xml).

 The solution was to treat any environment dependencies through parameters
and to create configuration files that contained all settings for a server type. We
laid the groundwork by explicitly providing a value for the server.type Ant property:

<!-- Server Type property-override customizations (if any) -->

<property name=”server.type.config.file” location=”${build.modules.home}/

deployment/servertypes/${server.type}.properties”/>

<echo message=”server.type.config.file=${server.type.config.file}”/>

<property file=”${server.type.config.file}”/>

 Having a separate properties-file for each server type was helpful, because it
made the deployment process agnostic of the type of server that we deployed
to. The main property set in each of these files was deploy.tomcat or deploy.
websphere (essentially deploy.server-type). Having these properties allowed us to
configure the build-war macro according to the server type to handle the inclusion/
exclusion of the JDBC 2.0 optional package (see Listing 1).

 Only one of the war-* targets is being called depending upon whether the
deploy.websphere property is defined or not. This results in a macro definition of
build-war, which has been configured for the target server.
 Similarly simply, the appropriate definitions for the security-* elements of the
web.xml are handled according to the value of server.type.

<!-- Copy the environment-specific version of the web-security.xml XDoclet

merge file -->

<target name=”web-security-websphere” if=”deploy.websphere”>

 <copy file=”${web.merge.dir}/was-web-security.xml”

 tofile=”${web.merge.dir}/web-security.xml” overwrite=”yes”/>

</target>

<target name=”web-security-tomcat” unless=”deploy.websphere”>

 <copy file=”${web.merge.dir}/tomcat-web-security.xml”

 tofile=”${web.merge.dir}/web-security.xml” overwrite=”yes”/>

</target>

 The targets web-security-tomcat and web-security-websphere are then named as
dependencies in other targets that use the XDoclet webdoclet task (which uses the
web-security.xml deployment descriptor snippet).

Listing 1: Ant macro for building a WAR file
<!-- Call the build-war macro that is defined by the dependencies
-->
<target name=”package-web”
 depends=”webdoclet,war-tomcat,war-websphere”>
 <build-war/>
</target>

<!-- Setup the build-war macro for a tomcat deploy -->
<target name=”war-tomcat” depends=”” unless=”deploy.websphere”>
 <macrodef name=”build-war”>
 <sequential>
 <war destfile=”${web.dist.dir}/${web.war}”
 webxml=”${web.build.dir}/WEB-INF/web.xml”
 compress=”true”>
 <fileset dir=”${web.build.dir}” excludes=”**/web.xml” />
 <webinf dir=”${struts.dir}” includes=”validator.
xml,*.dtd” />
 <lib dir=”${cfmx.dir}” includes=”*.jar” />
 <lib dir=”${commons-lang.dir}” includes=”*.jar” />
 <lib dir=”${dist.dir}” includes=”${dist.name}”
/>
 <lib dir=”${jstl.lib.dir}” includes=”*.jar” />
 <lib dir=”${struts.dir}” includes=”*.jar” />
 <lib file=”${commons-dbcp.jar}”/>
 <lib file=”${commons-pool.jar}”/>
 <lib file=”${log4j.jar}” />
 <lib file=”${spring.jar}” />
 <lib file=”${jdbc.jar}”/>
 <lib file=”${jtds.jar}”/>
 </war>
 </sequential>
 </macrodef>
</target>

<!-- Setup the build-war macro for a WebSphere deploy -->
<target name=”war-websphere” depends=”” if=”deploy.websphere”>
 <macrodef name=”build-war”>
 <sequential>
 <war destfile=”${web.dist.dir}/${web.war}”
 webxml=”${web.build.dir}/WEB-INF/web.xml”
 compress=”true”>
 <fileset dir=”${web.build.dir}” excludes=”**/web.xml” />
 <webinf dir=”${struts.dir}” includes=”validator.
 xml, *.dtd” />
 <lib dir=”${commons-lang.dir}” includes=”*.jar” />
 <lib dir=”${dist.dir}” includes=”${dist.name}”
 />
 <lib dir=”${jstl.lib.dir}” includes=”*.jar” />
 <lib dir=”${struts.dir}” includes=”*.jar” />
 <lib file=”${commons-dbcp.jar}”/>
 <lib file=”${commons-pool.jar}”/>
 <lib file=”${log4j.jar}” />
 <lib file=”${spring.jar}” />
 <lib file=”${jtds.jar}”/>
 </war>
 </sequential>
 </macrodef>
</target>

Configuring Ant for Deployments Between Different Application Servers

3. JDBC Template Code
 The Spring JDBC APIs allowed for facile database
coding – much cleaner code and standardization along
the lines of connection management and exception
handling.

4. Flexible Data Sources
 The Spring model of using beans to wire together
dependent objects allowed us to use extra-container
data sources. This came with the benefit of standard-
ized usage of data sources across our runtime scenarios
– no fiddling around with container-specific data source
configuration.

Jakarta Commons Logging API
 We used the Jakarta Commons Logging API from the
beginning. It provides a very useful abstraction of typical
logging needs while supplying useful hooks for plugging in
various logging services such as Log4j, the Java Logging API,
etc. WebSphere even provides a gateway to its own tracing
facility. The ws-commons-logging.jar in the lib directory off
the WebSphere installation root directory allows for logging
of classes to be controlled via the WebSphere Administra-
tive Console – as long as those classes were coded to use the
Jakarta Commons Logging API.
 Commons Logging allowed us to configure which
plugin to use (e.g., Log4J in a Tomcat environment,

JDJ.SYS-CON.com36 October 2005

Feature

WebSphere logging in that environment) and – via its
default implementation that simply writes to the console
– to trace unit test code without the need to configure
or enable a logging service. In addition, we were able to
completely turn off logging via configuration files. (This is
done by placing a file called commons-logging.proper-
ties on the classpath with the line org.apache.commons.
logging.Log=org.apache.commons.logging.impl.NoOpLog
in it). In fact, this was the standard configuration for run-
ning our unit tests, which were run as part of every build.
Of course, if a unit test failed, logging could be turned on
again as a diagnostic tactic by setting org.apache.com-
mons.logging.Log=org.apache.commons.logging.impl.
SimpleLog.

What About the Risks?
 After a year of real-life experience of developing several
applications and performing multiple production deploy-
ments with this configuration, we feel that developing on
Tomcat and deploying to WebSphere is a low-risk strategy.
Once the environments were set up and the deployment
process automated, there were very few problems. Spring
provided the necessary container capabilities that we
needed in a portable way. We were able to take advantage
of Spring’s bean management, service locator, data source,
and JDBC abstractions.

 Differences in the security infrastructure were over-
come by using Tomcat’s built-in features and by providing
stub code in the service layer of the development envi-
ronment that simulated the presence of TAM. We were
able to use the same LDAP server in development (with
Tomcat security) and in QA (with Tivoli Access Manager
security).
 Over time, the cost-saving aspect of cross-platform
development became less important in favor of other
advantages that were initially not anticipated. The
lightweight development environment turned out to be
a great advantage, and being forced to layer the applica-
tion architecture to achieve isolation from the container
produced cleaner and better maintainable application
code – something that reduced the overall project risks,
not increased them.

Summary
 It takes a good amount of planning to develop on
Tomcat and successfully deploy to a WebSphere envi-
ronment. Open source frameworks, such as Spring
and Struts, can be used to shield an application from
platform-dependent implementation details. Ant is a
handy tool that facilitates cross-platform deployments.
Special consideration is required to handle application
security across different platforms. Coding guidelines
designed to avoid platform-dependencies must be
followed rigorously.
 With all these things in mind, cross-platform Java de-
velopment is a rewarding goal, because your resulting
application will be cleaner, easier to maintain, and can
provide a real cost advantage.

Resources and Links
• JDBC package for Tomcat with JVM 1.3.1: http://

java.sun.com/products/jdbc/articles/package2.
html

• IBM WebSphere: http://www.ibm.com/developer-
works/websphere

• IBM Tivoli Access Manager: http://www.ibm.com/
developerworks/tivoli

• Struts: http://struts.apache.org
• Spring Framework: http://www.springframework.org
• Commons Logging: http://jakarta.apache.org/com-

mons/logging
• jTDS JDBC Driver: http://jtds.sourceforge.net/
• Info Center for Tivoli – with related replication/fail-

over configurations: http://publib.boulder.ibm.com/
infocenter/tivihelp/v2r1/index.jsp?toc=/com.ibm.
itame.doc_5.1/toc.xml

• Great detailed intro to Tivoli Access Manager – must
read for anyone considering TAM: http://www.red-
books.ibm.com/redpapers/pdfs/redp3677.pdf

 The production security configuration followed the recommendations
for Tivoli implementations published by IBM. The setup consisted of two
WebSEAL servers, two Web/application servers, one policy server, and
a master/replica LDAP configuration. The application servers hosted all
of the applications with WebSEAL tying to each application through an
IP/Port specific junction (a “junction” is a resource mapping and defines
the true location of a URI). This necessitates multiple network cards in
the WebSEAL machines in order to support multiple host addresses that
are on the standard Web port.
 Each production WebSEAL instance had numerous junctions config-
ured to the multiple applications. The configuration was also set up for
failover by ensuring that the server UUID configured in the junctions
matched on each machine; therefore cookies for session fail-over could
be picked up by either WebSEAL instance.
 Choosing to install the Authorization Server on each application server
created policy server redundancy. The authorization servers act as a
replica of Policy server information. As a default, when the authorization
server is installed, the application server does not hit the policy server
directly in most cases because it obtains authorization information
directly from the authorization server. The only time the policy server is
reached is for any account updates. All these settings can be found in a
configuration file (webseald.conf). Choosing to follow the authorization
server route ensures application availability in case the policy server is
down – it’s a more economical method for fail-over than a master/rep-
lica policy server configuration.

Tivoli Access Manager

Once properly configured, Eclipse can be a powerful hub
for developing your application”“

Ilia Papas is a software engineer

at Molecular. He has been

working with web applications

for five years and has interests in

the design and implementation

of enterprise applications using a

variety of technologies. He

currently lives in the Boston area.

ipapas@molecular.com

Dita Vyslouzil is a Consultant

and Technical Architect in the

Engineering group at Molecular

in Watertown. She has been in

software development for 7 years,

concentrating in transactional

web applications.

dvyslouzil@molecular.com

