
f the task at hand is to con-
nect a Pocket PC running
the .NET Compact

Framework to a Java back
end, and if Web services are ruled out
as an interoperability solution, there
are not many viable options available.
The one presented in this article may
well be the only one. This solution
requires MiddSol’s MinCor.NET. The
product is an object request broker for
the Compact Framework written in C#.
It supports Windows Mobile, Windows
XP Embedded, and Windows CE .NET.

�Requirements
A chat application is a good

example for an interoperability sce-
nario because it does not require
much business logic, but it still
allows for some interesting features
at the communication level. In this
example, an existing Java server
implements and exposes a basic
chat service through RMI. A mobile
client, to be written in .NET man-
aged code, will consume the chat
service. Chat subscribers must spec-
ify a user ID and their favorite
hobby. With the Naming Service’s IP
address, a subscriber can get a con-
nection to the chat host and send
messages that all subscribers will
see on their displays. The example
will demonstrate how a .NET devel-
oper who is unfamiliar with Java dis-
tributed object technology can do
the following:
• Generate an IDL file from a JAR

(Java Archive) file that describes
the interfaces in platform-inde-
pendent terms

• Generate .NET remote object stub
code from the Interface Definition
Language (IDL) file

• Write a .NET application that con-
sumes services provided by
remote Java objects

• Expose methods in .NET code
that will subsequently be invoked
by Java objects

To compile and run the exam-
ple files, the following software is
necessary:
• Visual Studio .NET 2003
• Sun Java Development Kit

Standard Edition 1.4
• MiddSol MinCor.NET Evaluation

License
• Microsoft ActiveSync (optional for

deployment to a Pocket PC
device)

�Alphabet Soup:
CORBA, RMI, IIOP

Because Remote Method
Invocation (RMI; Java’s own standard
for distributed object interoperabili-
ty) is based on the CORBA/IIOP pro-
tocol, it is possible to connect to an
RMI server from any CORBA client,
including a mobile .NET application.
On the Java side, this can be accom-
plished with regular Java classes that
implement the java.rmi.Remote
interface or by writing Enterprise
Beans (EJBs; see Figure 1). Today’s

application servers even expose Java
Naming and Directory Interfaces
(JNDIs) through a CORBA naming
service provider, which can be used
by the .NET client to locate the host.

Because one of the assumptions
was that the server code already
exists, it will (for the most part) be
considered a black box. The Java
chat interface must be exposed
through RMI, of course (see Listing
1; the listings and source code are
online at www.sys-con.com/dot-
net/source.cfm).

The IDL file is the glue between
the host and the subscriber code. It
contains a generic description of the
calling interfaces with abstract data
types that can be mapped to the actu-
al data types of the target platform. In
the chat example, the subscriber and
the host will act both as a server and a
client. Please note that the term “sub-
scriber” better describes the part of
the application that runs on the
mobile device than “client.” This is
because of the potential confusion
with the client at the communication
layer, which can be either side.

The subscriber will initialize the
session by sending a registration
packet to the host, which the host will
acknowledge by returning a list of
subscribers. Once registered, the sub-
scriber then sends messages to the
host as needed. The host calls other
subscribers to distribute the message
to all participating devices. When a
subscriber wishes to deregister, he

40 December 2004 • dotnetdevelopersjournal.com

Java

HOME

CLIENT

SERVER

E
V

E
R

Y
W

H
E

R
E

ii

Connecting Microsoft Mobile
Devices to Java Infrastructures

Integrating a .NET Compact Framework
application with a Java back end

BY CHRISTIAN
DONNER

41

must call the host again.. MinCor.NET
comes with a utility called MCjava2cs.
exe. This little program will do most of
the glue work for you. It opens existing
JAR files (Java Archive files) and lists all
the RMI and EJB interfaces found for
selection (see Figure 2). In Figure 2, the
tool is pointed to the ChatHost.jar of
the example. The Host and Subscriber
interfaces were selected. MCjava2cs
further lists serializable Classes (passed
by value) or selection (see Figure 3).

The example contains two classes
of this type that were both selected.
The last step is to run the generation
process that creates C# code for the
selected interfaces (see Figure 4).

The tool actually performs two dis-
tinct tasks. First, it extracts the IDL defi-
nition from the Java code. Second, it
generates C# code based on the IDL
generated during Step 1. The IDL file is

transient because it is not needed once
the C# code has been generated. The
tool created a file named host.cs, based
on the name space of the Java inter-
face. It contains the host class skeleton
code and some helper methods. If this
sounds like something you don’t want
know, you can relax. MCjava2cs.exe

allows you to write CORBA code with-
out any knowledge of IDL syntax and
IDL types.

When I used the tool, I experienced
problems with JVM version 1.4.2_04-
b04, but it worked with JVM 1.4.2_05-
b04. Also, make sure that there are no
spaces in the path to the JAR file and
the C# output path. These issues will
likely be fixed by the time you down-
load the trial software.

To better understand the purpose
of the methods that the Java host
makes available, it is beneficial to take
a detailed look at the communication
between the host and a subscriber.

In Figure 5, the host interface
exposes three methods that will be
called by subscribers: signOn(),
signOff(), and sendMessage(). The
method signOn()accepts one parame-
ter (subscriberAccount) and returns a

HashTable with all subscriber names.
sendMessage() is called by the sub-
scriber to send a message and requires
the sender’s name and the message as
parameters. signOff() is called by the
subscriber to end the chat session.
Because the subscriber name is used as
a key, it must be unique.

The subscriber, on the other hand,
must allow the host to update the dis-
play by exposing its interface to the
host for a method call. displayMes-
sage() requires two parameters: the
name of the sender and the message
itself.

The class subscriberAccount is
known to both the host and the sub-
scriber and is passed by value. It holds
information about a subscriber’s name,
hobby, and Subscriber interface. The
latter must be exposed to the host so
that the host can call the subscriber’s
displayMessage() method. See Listing 2
for how the Java implementation looks.

�The Client Project
With the server in place and

the stub code already generated,
what’s left to do is to write the
subscriber presentation layer
(MainDialog.cs), the implementa-
tion of the Subscriber interface
(SubscriberImpl.cs), and the code for
application initialization and connec-
tion management (Connection.cs).

The code for the client user interface is
of limited interest in the context of this
article, with one exception. In the .NET
Compact Framework, only the main
thread of an application is supposed to
access UI controls directly. Because of
this restriction, the host cannot simply

AUTHOR BIO:

Christian Donner is a senior

consultant and application architect

with Molecular Inc., a premier

technology consulting firm based

in Watertown, Massachusetts.

When he isn’t tinkering with mobile

technology, he designs and devel-

ops enterprise-level Web solutions

for Fortune 1000 clients.

�pubs2004@donners.com

f 1

f2 Figure 2: MCjava2cs.exe

f3 Figure 3: Serializable classes to be generated

f 4 Figure 4: Running the genera-

tion process, creating C# code

for the selected interfaces

Figure 1: EJB container

and remote connections

dotnetdevelopersjournal.com • December 2004

42 December 2004 • dotnetdevelopersjournal.com

Java

HOME

CLIENT

SERVER

E
V

E
R

Y
W

H
E

R
E

invoke the method displayMessage() to
write to the subscriber’s display (the
ORB is multithreaded and
displayMessage() runs as a separate
thread). The main dialog’s interface
AsyncUIAccess provides a workaround.
The implementation of the method
writeLog() writes to a queue. A timer
empties the queue on a regular basis
and writes all content to the display.
This interface is defined in MainDialog.
cs. FrmChatSubscriber implements the
writelog() method:

public interface AsyncUIAccess

{

void writeLog(

string a_strMsg);

}

The rest of the presentation code
should be straightforward to read and
understand and will not be discussed.

Instead, the article will walk you
through the Subscriber interface
and the Connection class that pro-
vides a wrapper for the remote
objects and manages the connec-
tion. The folder /Serializables in the
Visual Studio project helps to
organize the solution (see Figure 6).
It contains the implementations of
all serializable CORBA classes, or
CORBA valuetypes. In this case,
they are SubscriberAccountImpl
and SubscriberInfoImpl. They are
derived from Chat.Subscriber-
Account (SubscriberInfo, respec-
tively), which are generated classes
in Chat.cs. These classes are used
to pass subscriber information
between the client and the server.
SubscriberInfo does not expose the
subscriber’s interface, which is only
needed by the host, and can there-
fore be safely passed to other
clients in a hashtable. The suffix
Impl is a naming convention that
serves as a reminder of this fact.

The generated parent class
already defines the properties and
has abstract getter- and setter-
method declarations. Therefore, the
implementation is rather simple
(see Listing 3). The implementation
of the subscriber interface exposes
one method, displayMessage(), that
the host can call (see Listing 4).

AsyncUIAccess is the imple-
mentation of the display queue for
the timer that was mentioned earli-
er. SubscriberPOA, the parent of the
SubscriberImpl, is also a generated
class. POA stands for Portable
Object Adapter. When a client

invokes a server object, the POA
helps the request broker to activate
the appropriate object and to deliv-
er requests to it.

The last module on the client
side that deserves attention is
Connection.cs. This class contains
the methods that manage the com-
munication between subscriber
and host. It maintains a reference
to the host and to its own interface.
It also instantiates an object
request broker instance (ORB; see
Listing 5).

initCORBA() contains standard
CORBA initialization code. It uses
the .NET DNS API to get the local
device’s IP address, instantiates a
new ORB, retrieves a reference to
the newly created root portable
object adapter (POA), and “nar-
rows” it to the correct type
(Middsol.PortableServer.POA).
Finally, it activates the POA that has
been in a holding state.

connectToHost() uses the Java
Naming Services to locate the host.
It requires an IP address, connects
to the name server on this host,
and requests the location of a serv-
er called ChatHost. AsyncUIAccess,
although not needed by some of
the methods, is passed to enable
future improvements.displayListOf-
Subscribers() iterates through the
list of subscribers that the host
returned and writes each entry to
the list box on the screen.

�Deploy and Test
Once the solution files are

downloaded, unpacked, and
loaded into Visual Studio, the bina-
ries for the subscriber can be built
and tested. The host requires the
Sun naming Service (orbd.exe) to
be running. The subscriber client
can be tested without a mobile
device. To run the client in debug
mode, though, it must either be
deployed to a device or to the
Pocket PC emulator (see Figure 7).
Visual Studio will prompt you for a
target device and if everything was
configured properly, the emulator
will be one of the choices.
Unfortunately, it does not support
the callback functionality, which
means that the displayMessage()
method will not work and eventu-
ally time out. In Figure 7, the user

f6 Figure 6: Visual Studio Solution

Explorer

f5 Figure 5: The host interface exposes three methods

dotnetdevelopersjournal.com • December 2004

Lukas is running the emulator and he does not see
any messages — neither his own nor from Sophia
who is running the subscriber natively.

The client executable runs as a Windows application,
too, which makes it very easy to test (see Figure 8).

With these restrictions in mind, use the following steps
to build and test the applications:
• Run the supplied buildChat-Host. bat to compile the
host sources. This batch creates the class files, RMI
stubs, and the JAR file. It also builds the IDL and calls
MCidl2cs to generate the .NET code. It is not necessary
to run MCjava2cs.exe.

• Load the subscriber solution into Visual Studio and
build the binaries (after fixing the references to the
MiddSol libraries).

• Start the Sun ORB demon. orbd.exe -ORBInitialPort
1050, or use the supplied batch file start-
NameService.bat.

• Run startChatHost.bat to start the host service, or type
in the following command:

start java -cp .;ChatHost.jar

-Djava.naming.factory.initial=com.sun.jndi.cosnam-

ing.CNCtxFactory

- Djava.naming.provider.url=iiop://local-

host:1050 ChatHost

• Start the subscriber executable (DotNetClient.exe).
• Type in the Naming Service’s IP address, subscriber

name, and a hobby.
• Click the sign-on button.

Please feel free to improve the code and direct all ques-
tions or comments to me at pubs2004@donners.com.

�Conclusion
This article demonstrated that it is possible to integrate

a .NET Compact Framework application with a Java back
end. This integration requires very little knowledge of the
technical details of the middleware. MiddSol’s MinCor.NET
is a young product and still a little rough around the edges.
However, it is a powerful tool that connects your .NET
application to a vast selection of CORBA-enabled targets,
including J2EE Enterprise Beans and RMI objects, without
any further tools.

�Resources
• Introduction to Development Tools for Windows

Mobile-based Pocket PCs and Smartphones (recom-
mended):
http://msdn.microsoft.com/mobility/windowsmo-
bile/default.aspx?pull=/library/en-
us/dnppcgen/html/devtoolsmobileapps.asp

• Fundamentals of Microsoft .NET Compact
Framework Development for the Microsoft .NET
Framework Developer:
http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/dnnetcomp/html/net_vs_netcf.asp

• Download the MinCor.NET evaluation copy:
www.MiddSol.com

• An Overview of the CORBA Portable Object Adapter:
www.cs.wustl.edu/~schmidt/PDF/POA.pdf

43

f 7 Figure 7: Using the emulator to chat

f8 Figure 8: The client executable running as an XP application

